Module 9: Contextual Bandits DAV-6300-1: Experimental Optimization

David Sweet // 20241107

Notation: "Proportional to"

V

- y = kx
- $y \propto x$

Review: Thompson sampling

- Allocate observations to arms in proportion to the probability each arm is best
 - $p_{arm} \propto p_{best}$
- Stop when $\max\{p_{\text{best}}\} > 0.95$

Review: Predictor-in-controller

- Predictor: Estimates a target, ex., P{click} on an ad
- Controller: Uses predictions to make a decision / choose an action
 - Ex., "Of the 1000 ads available, show the one with the highest P{click}"

Industrial engineered systems Predictors in controllers

Controller	Prediction	Action	Reward
Ad server	P{click}	Show ad with highest P{click}	CPC revenue
Fraud detector	P{fraudulent}	Hold charges with high P{fraudulent} until customer gives OK	Avoid losing money to fraud
Trading strategy	E[return]	Buy when E[return] > 0, sell when E[return] < 0	Revenue ("PnL")
Social media feed	P{like}	Show posts with highest P{like}	Users spend more time on feed

Production logs

- Every time you show an ad, log
 - features of the ad
 - features of the user
 - whether the user clicked
- data = $\{(x_i, y_i)\}$, where
 - x_i = all of the features
 - $y_i = 1$ if clicked, else 0; "click indicator"

Typical design Estimate P{click}

- Fit an SL model to the data, like
 - Logistic regression
 - Neural network
- Model may have many parameters
- Model estimates P{click} = click-through-rate = CTR
- More precisely: P{click | ad & user features} = CTR for ad

Typical design Periodic refitting

- Fit model every day
- Use data from trailing month's logs
- Production uses latest, refit model
- Refitting tracks changes in system over time

Problem: Variance

- Day 1: Show Ads A & B 100 times each
 - 10/100 clicks on A from NYC
 - 5/100 clicks on B from NYC
- Over night: Fit a regression
 - $P\{\text{click} | NYC, A\} = .10$
 - $P\{\text{click} | NYC, B\} = .05$
- Day 2: Always show ad A to NYC users.

NYC is context

A,B are arms or "actions"

Problem: Variance

- Better
 - $P\{\text{click} | NYC, A\} = .10 \pm .07$
 - $P\{\text{click} | NYC, B\} = .05 \pm .03$
- |SE[click|NYC,A] > E[click|NYC,B]?

Problem: Missing counterfactuals

- Just by chance, no measurements in fourth box
- Counterfactual: What would have happened if we had taken another action?

	NYC	LA
A	10/100	20/100
B	5/100	

Problem: Missing counterfactuals

- Regression predicts the last box
- No actual data for fourth box
- Day 2: Show only Ad A to LA users

	NYC	LA
A	10/100	20/100
B	5/100	10/100 ?

Problem: Missing counterfactuals

- Oops. Model was wrong.
- Missed opportunity

	NYC	LA
A	10/100	20/100
B	5/100	30/100

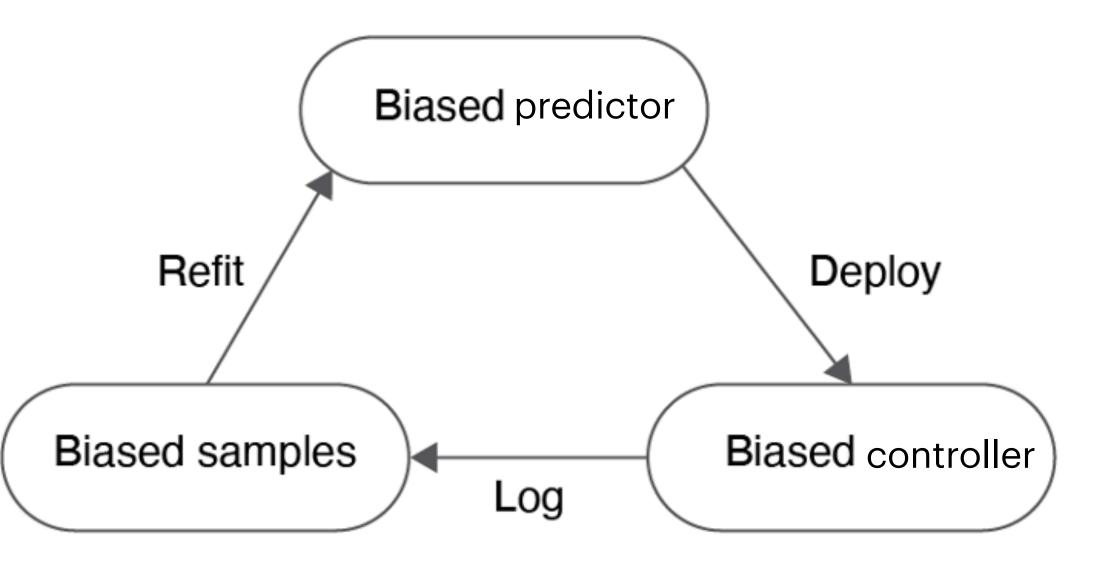
Small-Sample Bias

- Smaller samples have larger variance
- Smaller sampler have larger biases
- Predictor (e.g., regression) inherits/learns bias
- Only more data can fix it.

More independent, identically distributed data, that is

Small-Sample Bias

- Biased predictor ==> Biased controller
- Endless feedback loop

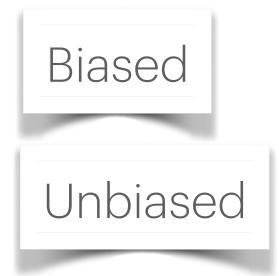


Solution: Explore Arms

- Epsilon-greedy ad selection:
 - Exploit: w/probability 0.90, use the predictor
 - Explore: w/probability 0.10, show an ad at random
- Exploration collects counterfactuals
- Exploration collects everything, actually

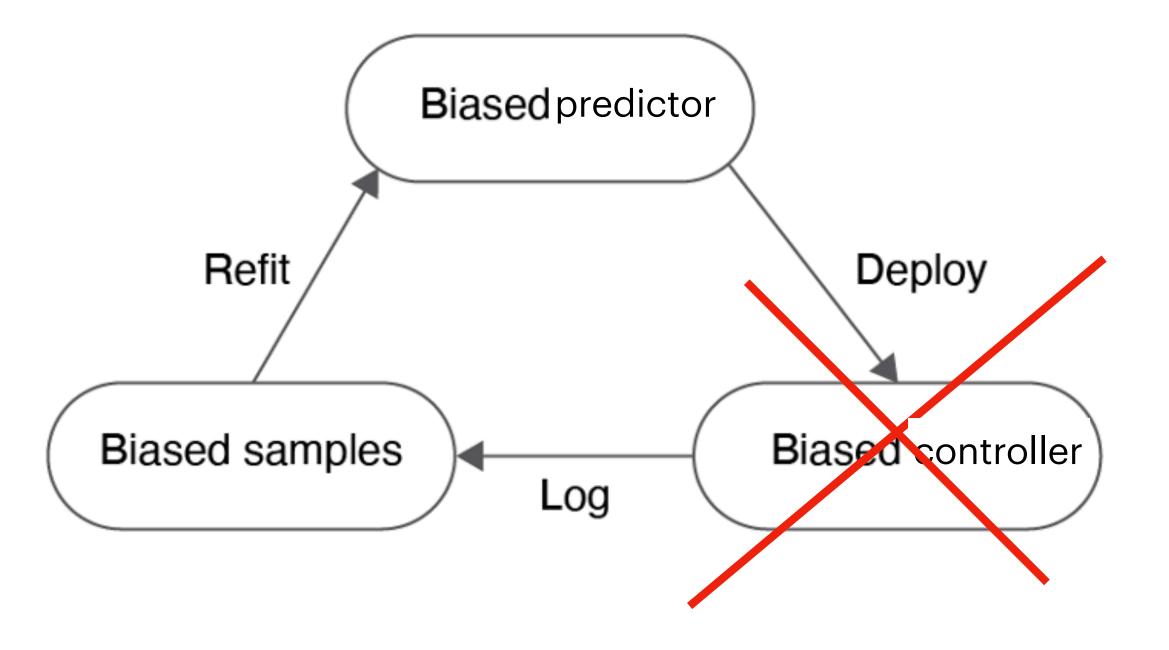
Reduces bias

Reduces variance



Solution: Explore Arms

- Breaks the feedback loop
- Controller not (totally) biased



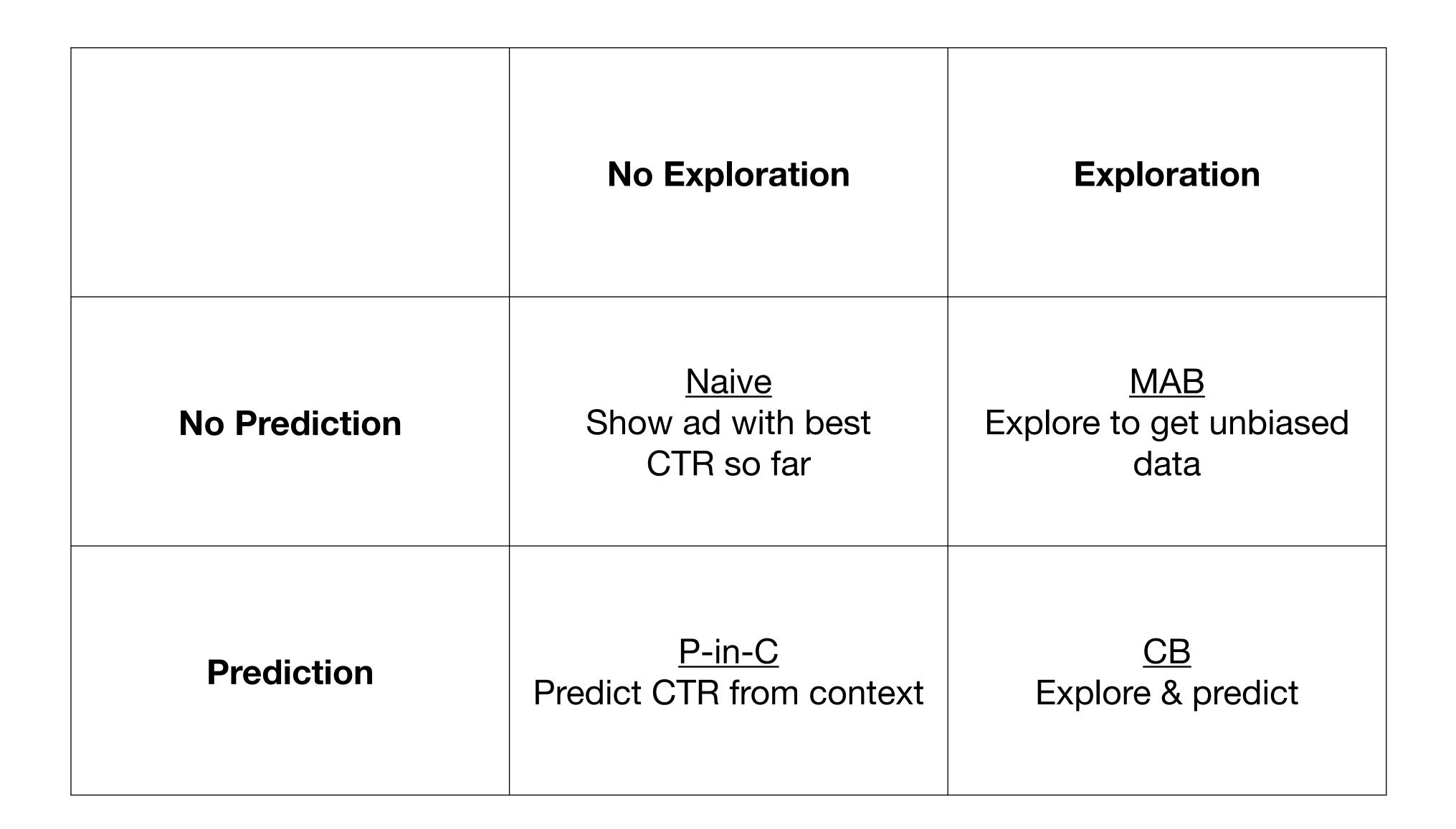
Contextual bandits

- Can optimize many millions of parameters of predictor
- Only for short-term business metrics, aka rewards
 - Ex: CTR, likes, fraudulent transaction
 - But **not**: DAU, daily pnl, purchase following ad, time spent per day

Contextual bandit

- Each ad is an arm
- MAB: Models μ , se
- CB: μ | context, *se* | context
- Context: Features of ad and user
 - Hence the name contextual bandit

Controller classes



Thompson Sampling

- TS works in CB, too:
 - MAB: $m_a \sim \mathcal{N}(\mu_a, se_a^2)$
 - MAB: $m_a = \mu_a + se_a \times \varepsilon$, $\varepsilon \sim \mathcal{N}(0,1)$
 - CB: $m_a(c) = \mu_a(c) + se_a(c) \times \varepsilon$
- Draw ε once for each arm
- Explores arms

Bootstrap Thompson Sampling

- Generate B bootstrap samples of data
- Fit B models; an ensemble of models
- To show an ad:
 - Choose 1 model from ensemble, randomly
 - Use that model to decide which ad to show
- Model more uncertain ==> more exploration ==> more certain model tomorrow

Short-term business metrics only

- Wow: CB can optimize millions of parameters
- Catch: CB only works with short-term business metrics (rewards)
 - Ex: CTR, likes, fraudulent transaction
 - But **not**: DAU, daily pnl, purchase following ad, time spent per day
- CB needs (features, target) pairings and many samples in data set
 - Ex: DAU is 1 number/day, even though many, many ads shown

RHLF is a CB

Summary

- exploration
- Perspective 2: CBs improve MAB decisions by conditioning on context, i.e. adding a prediction model
- Contextual bandits use exploration to collect unbiased data
- Bootstrap Thompson sampling explores models
- Contextual bandits enable optimization of many parameters, but only for short-term business metrics

• Perspective 1: CBs fix feedback loops that bias predictor-in-controller designs by adding